代立东
姓名:代立东
性别:男
职称:二级研究员、中国科学院特聘核心骨干研究员、博士生导师
职务:实验室主任
通讯地址:贵阳市观山湖区林城西路99号
Email:dailidong@vip.gyig.ac.cn
简历:
1997.09‒2001.07 中国地质大学(武汉)本科学习
2001.09‒2006.05 中科院地球化学研究所博士研究生
2006.05‒2008.01 中国科学院地球化学研究所,助理研究员
2008.02‒2009.02 美国耶鲁大学地球与行星科学学院,访问学者
2009.03‒2010.09 中国科学地球化学研究所,副研究员
2010.10‒2012.11 东京工业大学地球科学与行星学院,日本学术振兴会外国人特别研究员
2012.12‒2013.11 美国耶鲁大学地球与行星科学学院,访问学者
2013.12‒现在 四级、三级、二级研究员,中国科学院核心研究员和博士生导师
2016.11‒2017.02 美国纽约州立大学石溪分校矿物物理研究所,高级访问学者
2019.10‒2020.08 美国耶鲁大学地球与行星科学学院,高级访问学者。
研究方向:
1. 同步辐射的X射线衍射和布里渊散射弹性波速测量;
2. 多面顶压机和金刚石对顶砧上控制热力学条件下地球深部矿物岩石电学性质的原位测量;
3. 材料物理学化学;
4. 地球内部矿物物理化学。
承担科研项目情况:
1. 国家万人计划领军人才和科技部中青年科技创新领军人才资助项目,在研;
2. 国家自然科学基金面上项目“高温高压和不同体积分数磁铁矿掺杂下形变蛇纹石电导率及其地球物理学意义”(2021.01-2024.12, 资助号:42072055),在研;
3. 国家自然科学基金面上项目“高温高压下不同压力、氧逸度、水含量、铁含量和碳含量的人工合成榴辉岩电导率的实验研究及地球物理学意义”(2018.01-2021.12, 资助号:41774099),已结题;
4. 中国科学院前沿科学重点研究项目“百万大气压金刚石压腔高压设备上矿物电学性质的原位实验测量” (2016.08-2020.12, 资助号:QYZDB-SSW-DQC009),已结题;
5. 国家自然科学基金面上项目“控制热力学下各向异性对含水的橄榄石及形变的橄榄岩电导率的实验研究”(2015.01-2018.12, 资助号:41474078),已结题;
6. 中国科学院青年创新促进会专项基金 (2013.01-2016.12),已结题;
7. 国家自然科学基金面上项目“下地幔及核幔边界方镁铁矿电学性质测量” (2012.01-2015.12, 资助号:41174079),已结题;
8. 日本学术振兴会外国人研究员资助项目“世界同步光源国家实验室日本SPring-8的金刚石对顶砧上下地幔-核幔边界-地核典型矿物布里渊散射的弹性波速测量” (2010.10-2012.12, 资助号:P10334),已结题;
9. 中国科学院知识创新重要方向项目 (青年人才类)“上地幔及地幔转换带中的水-电导率实验测量”(2010.01-2012.12, 资助号:KZCX2-YW-QN110),已结题;
10. 国家自然科学基金面上项目“高温高压下上地幔及过渡带石榴子电学性质实验研究” (2010.01-2012.12, 资助号:40974051),已结题。
社会任职:
1. 中国工程物理研究院冲击波物理与爆轰物理全国重点实验室学术委员会委员 (2023−);
2. 中国地球物理学会流体地球科学专业委员会副主任 (2022−);
3. 中国矿物岩石地球化学学会实验矿物岩石地球化学专业委员会副主任 (2022−);
4. 中国地球物理学会构造物理化学专业委员会副主任 (2021–);
5. 中国物理学会高压物理学会专业委员会委员 (2023−);
6. 中国地震学会构造物理专业委员会委员 (2021–);
7. 中国岩石力学与工程学会高温高压岩石力学专业委员会 (2020–);
8. 国际SCI刊物:《Scientific Reports》(2023年最新影响因子:4.6)编委 (2022−);
9. 国际SCI刊物:《Frontiers in Earth Science》(2023年最新影响因子:2.9)专辑:Rock Physics of Unconventional Reservoirs: Volume I and Volume II客座主编 (2022−);
10. 国际SCI刊物:《Frontiers in Earth Science》(2023年最新影响因子:2.9)专辑:High-pressure Physical Behavior of Minerals and Rocks: Mineralogy, Petrology and Geochemistry客座主编 (2022−);
11. 全国大学生挑战杯科技竞赛特邀评委,共青团中央发展部 (2022−);
12. 教育部全国研究生教育评估与学位论文监测专家库评审专家 (2021−);
13. 国际SCI刊物:《Frontiers in Earth Science》(2022年最新影响因子:2.9)副主编 (2021−);
14. 国际SCI刊物:《Frontiers in Earth Science》(2022年最新影响因子:2.9)专辑:High-pressure Physical Behavior of Minerals and Rocks: Mineralogy, Petrology and Geochemistry客座主编 (2021−);
15. 国际SCI刊物:《Minerals》(2022年最新影响因子:2.5)编委 (2021−);
16. 国际SCI刊物:《Minerals》(2022年最新影响因子:2.5)专辑:High-Pressure Physical and Chemical Behaviors of Minerals and Rocks客座主编 (2021−);
17. 中国科学院地球化学研究所学术委员会成员 (2021‒);
18. 中国科学院地球化学研究所纪委委员 (2020‒);
19. 国内EI刊物《高压物理学报》编委 (2019‒);
20. 中国科学院青年创新促进会会员 (2013−);
21. 日本学术振兴会 (JSPS) 会员 (2010−);
22. 美国地球物理学会会员 (2008−)。
主要获奖及荣誉:
1. 贵州省优秀科技个人奖 (2022);
2. 国家万人计划领军人才和科技部中青年科技创新领军人才计划入选者 (2021);
3. 《高压物理学报》优秀编委 (2021);
4. 中国科学院海外高层次人才终期评估优秀 (2019);
5. 中国科学院昆明分院“建功立业时代先锋”优秀个人 (2019);
6. 贵州省省管专家(第八批)(2019);
7. 贵州省省直机关优秀共产党员 (2019);
8. 贵州省九三学社优秀社员 (2015);
9. 贵州省青年联合会第十届委员会委员 (2015);
10. 中国科学院海外高层次引进人才 (2013);
11. 中国科学院青年创新促进会会员 (2013);
12. 中国科学院地球化学研究所第二届研究生学术年会优秀导师奖 (2013);
13. 中国地质学会地质青年科技奖最高奖-金锤奖 (2011);
14. 日本学术振兴会学者奖 (2010);
15. 中国科学院院长奖优秀奖 (2006);
16. 中国科学院优秀毕业生奖 (2006)。
第一作者及通讯作者代表性论著:
[132] Hong Meiling, Dai Lidong*, Hu Haiying* and Li Chuang. Structural, ferroelectric and electronic transitions in van der Waals multiferroic material of CuCrP2S6 under high temperature and high pressure. Physical Review B, 2024, in press.
[131] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas and Raju Suresh Kumar. Artificial shock wave impact studies on olivine single crystal–A Raman spectroscopic approach. Ceramics International, 2024, in press.
[130] Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu and Li Chuang. Pressure-induced ferroelectric and electronic transitions in two-dimensional ferroelectric semiconductor of NbOCl2 up to 41.7 GPa. Applied Physics Letters, 2024, 124: 112903, doi: 10.1063/5.0194490.
[129] Hu Haiying, Yin Chuanyu, Dai Lidong*, Lai Jinhua, Chen Yiqi, Wang Pengfei, Zhu Jinlong and Han Songbai. The role of α−β quartz transition in fluid storage in crust from the evidence of electrical conductivity. Journal of Geophysical Research: Solid Earth, 2024, 129, e2024JB029140, doi: https://doi.org/10.1029/2024JB029140.
[128] Hu Ziming, Dai Lidong*, Hu Haiying*, Sun Wenqing, Wang Mengqi, Jing Chenxin, Yin Chuanyu, Luo Song and Lai Jinhua. Influence of anisotropy on the electrical conductivity of apatite at high temperatures and high pressures. American Mineralogist, 2024, 109: 814–826.
[127] Li Chuang, Dai Lidong*, Hu Haiying and Hong Meiling. Pressure-induced structural phase transitions and metallization in cuprous oxide under different hydrostatic environments up to 25.3 GPa. Chemical Physics, 2024, 587, 112414, doi: https://doi.org/10.1016/j.chemphys.2024.112414.
[126] Qi Qiaomu*, Dai Lidong*, Lebedev Maxim*, Müller Tobias* and Zhang Junfang*. Editorial: Rock physics of unconventional reservoirs: Volume II. Frontiers in Earth Science, 2024, 12: 1477833, doi: https://doi.org/10.3389/feart.2024.1477833.
[125] S. Sahaya Jude Dhas, Sivakumar Aswathappa, Dai Lidong*, Raju Suresh Kumar, Abdulrahman I. Almansour and S. A. Martin Britto Dhas*. X-ray diffraction studies of L-isoleucine under shocked conditions. Journal of Electronic Materials, 2024, 53: 1634–1641.
[124] Sivakumar Aswathappa, Dai Lidong*, S. A. Martin Britto Dhas and Raju Suresh Kumar. Acoustic shock wave-induced dynamic recrystallization of amino acids: A case study on L-serine. CrystEngComm, 2024, 26: 3331–3340.
[123] Sivakumar Aswathappa, Dai Lidong*, S. A. Martin Britto Dhas, Raju Suresh Kumar, Vasanthi Thangavel and V. N. Vijayakumar. Assessment of shock wave resistance of SiO2 (α-cristobalite): A potential material for aerospace and defense industry applications. Ceramics International, 2024, 50: 35647–35656.
[122] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, Priyadharshini Matheswaran, Raju Suresh Kumar, Vasanthi Thangavel and V. N. Vijayakumar. Acoustic shock wave processing on amorphous carbon quantum dots–Correlation between spectroscopic–morphological–magnetic and electrical conductivity properties. Ceramic International, 2024, 50: 17011−17019.
[121] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Raju Suresh Kumar and A. Arokia Nepolian Raj. Acoustic shock wave induced chemical reactions−A case study of NaCl single crystal. Journal of Molecular Structure, 2024, 1312: 138490, doi: https://doi.org/10.1016/j.molstruc.2024.138490.
[120] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Prabhu Sengodan and Raju Suresh Kumar. Dynamic shock wave processing on β-MnMoO4 ceramic micro-sized crystals and its structure-morphology-property relations. Journal of Materials Research and Technology, 2024, 30: 1696−1705.
[119] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Sourav Laha, Raju Suresh Kumar and Abdulrahman I. Almansour. Acoustic shock wave-induced solid-state fusion of nanoparticles: A case study of the conversion of one-dimensional rod shape into three-dimensional honeycomb nanostructures of CdO for high-performance energy storage materials. Inorganic Chemistry, 2024, 63: 576−592.
[118] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Eniya Palaniyasan, Raju Suresh Kumar and Abdulrahman I. Almansour. Synthesis of crystalline graphite from disordered graphite by acoustic shock waves: Hot-spot nucleation approach. Applied Surface Science, 2024, 655: 159632, doi: https://doi.org/10.1016/j.apsusc.2024.159632.
[117] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, Eniya Palaniyasan, Raju Suresh Kumar and Abdulrahman I. Almansour. Experimental evidence of acoustic shock wave-induced dynamic recrystallization: A case study on Ammonium Sulfate. Crystal Growth & Design, 2024, 24: 491−498.
[116] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, S. A. Martin Britto Dhas, K. Kamala Bharathi, Raju Suresh Kumar and Abdulrahman I. Almansour. Experimental demonstration of acoustic shock wave-induced solid-state morphological transformation from irregular to rod shape: A case study of L-tyrosine. CrystEngComm, 2024, 26: 1199–1203.
[115] Sivakumar Aswathappa, Dai Lidong*, S. Sahaya Jude Dhas, Vasanthi Tangavel, Vijayakumar Vellapalayam Nallagounder and Raju Suresh Kumar. Acoustic shock wave-induced amorphous to crystalline phase transitions of Li2SO4–Raman spectroscopic and thermal calorimetric approach. Journal of Physical Chemistry A, 2024, 128, 3095−3107.
[114] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Muthuvel Vijayan, Raju Suresh Kumar and Abdulrahman I. Almansour. Acoustic shock wave recovery experiments on cubic zinc sulfide nanoparticles for electrical and magnetic switches applications. Ceramics International, 2024, 50: 7418–7430.
[113] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Vasanthi Thangavel, V. N. Vijayakumar, Raju Suresh Kumar and Abdulrahman I. Almansour. Experimental evidence on the sustainability of crystallographic and chiral symmetry of L-Alanine under dynamic shocked conditions. Journal of Molecular Structure, 2024, 1301: 137348, doi: https://doi.org/10.1016/j.molstruc.2023.137348.
[112] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Raju Suresh Kumar and Abdulrahman I. Almansour. Comprehensive realization of the crystal growth perfection of the uni-indexed, bi-indexed and tri-indexed planes of single crystals grown by unidirectional technique–A case study on potassium dihydrogen phosphate. Journal of Molecular Structure, 2024, 1303: 137613, doi: https://doi.org/10.1016/j.molstruc.2024.137613.
[111] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Muthuvel Vijayan, Ikhyun Kim, Raju Suresh Kumar and Abdulrahman I. Almansour. Acoustic shock wave-induced short-range ordered graphitic domains in amorphous carbon nanoparticles and correlation between magnetic response and local atomic structures. Diamond and Related Materials, 2024, 141: 110587, doi: https://doi.org/10.1016/j.diamond.2023.110587.
[110] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Freire P. T. C, Kumar Raju Suresh and Almansour Abdulrahman I. Acoustic shock wave-induced ordered to disordered switchable phase transitions: A case study of ferroelectric Triglycine Sulphate single crystal for the application of molecular switches. Journal of Solid State Chemistry, 2024, 332: 124552, doi: https://doi.org/10.1016/j.jssc.2024.124552.
[109] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Mowlika Varadhappa, Raju Suresh Kumar and Abdulrahman I. Almansour. Switchable phase transitions from non-magnetic to magnetic cerium oxide nanoparticles using acoustic shock waves. Materials Research Bulletin, 2024, 171: 112636, doi: https://doi.org/10.1016/j.materresbull.2023.112636.
[108] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas Sathiyadhas, Martin Britto Dhas Sathiyadhas Amalapushpam, Vasanthi Thangavel, Vellapalayam Nalagounder Vijayakumar, Raju Suresh Kumar and Abdulrahman I. Almansour. Unveiling the correlation between the structure and property of the amorphous state of hydrated nickel sulfate (NiSO4•6H2O) induced by acoustic shock waves–An x-ray diffraction, thermal calorimetric and dielectric spectroscopic approach. Materials Science and Engineering B, 2024, 302: 117205, doi: https://doi.org/10.1016/j.mseb.2024.117205.
[107] Sivakumar Aswathappa, Dai Lidong*, Sathiyadhas Sahaya Jude Dhas, Kumar Raju Suresh and Varadhappa Reddy Mowlika. Acoustic shock wave-induced rutile to anatase phase transition of TiO2 nanoparticles and exploration of their unconventional thermodynamic structural transition path of crystallization behaviors. Inorganic Chemistry, 2024, 63: 17043−17055.
[106] Sivakumar Aswathappa, Dai Lidong*, Simon A. T. Redfern, S. Sahaya Jude Dhas, Xiaolei Feng, Eniya Palaniyasan and Raju Suresh Kumar. Acoustic shock wave-induced sp2-to-sp3-type phase transition: A case study of graphite single crystal. Journal of Materials Chemistry C, 2024, 12: 14581–14589.
[105] Sivakumar Aswathappa, Eniya Palaniyasan, Sahaya Jude Dhas Sathiyadhas, Dai Lidong*, Raju Suresh Kumar, Abdulrahman I. Almansour, Kalyana Sundar Jeyaperumal and Martin Britto Dhas Sathiyadhas Amalapushpam*. Acoustic shock wave-induced crystallographically order–disorder switchable phase transition of Ammonium Sulfate crystal–X-ray diffraction and Raman spectroscopic approach. Physica Status Solidi B: Basic Solid State Physics, 2024, 261: 2300549, http://doi.org/10.1002/pssb.202300549.
[104] Zhang Xinyu, Dai Lidong*, Hu Haiying*, Hong Meiling and Li Chuang. Pressure-induced phase transition and metallization in zirconium disulfide under different hydrostatic environments up to 25.3 GPa. Materials Research Bulletin, 2024, 175:112787, doi: https://doi.org/10.1016/j.materresbull.2024.112787.
[103] Zhang Xinyu, Dai Lidong*, Hu Haiying, Hong Meiling and Li Chuang. Constraints on the spin-state transition of siderite from laboratory-based Raman spectroscopy and electrical conductivity under high temperature and high pressure. Geoscience Frontiers, 2024, 15, 101918, doi: https://doi.org/10.1016/j.gsf.2024.101918.
[102] Dai Lidong* and Hu Haiying*. Editorial for Special Issue "High-Pressure Physical and Chemical Behaviors of Minerals and Rocks". Minerals, 2023, 13, 477, https://doi.org/10.3390/min13040477.
[101] Dai Lidong*, Hu Haiying*, Liu Xi*, Manthilake Geeth*, Saltas Vassilios* and Jiang Jianjun. Editorial: High-pressure physical behavior of minerals and rocks: Mineralogy, petrology and geochemistry. Frontiers in Earth Science, 2023, 10, 1126463, doi: https://doi.org/10.3389/feart.2022.1126463.
[100] Dai Lidong, Hu Haiying and Jiang Jianjun. Book: High-Pressure Physical and Chemical Behaviors of Minerals and Rocks, 2023, MDPI: St. Alban-Anlage, Basel, Switzerland, pp: 1–174. https://doi.org/10.3390/books978-3-0365-7291-8.
[99] Dai Lidong, Liu Xi, Manthilake Geeth, Saltas Vassilios and Hu Haiying. Book: High-pressure Physical Behavior of Minerals and Rocks: Mineralogy, Petrology and Geochemistry, 2023, Frontiers Media SA: Lausanne, Switzerland, pp: 1–179. https://doi.org/10.3389/978-2-83251-395-8.
[98] Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu, Li Chuang and He Yu. Pressure-driven structural and electronic transitions in a two-dimensional Janus WSSe crystal. Inorganic Chemistry, 2023, 62: 16782−16793.
[97] Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu, Li Chuang and He Yu. Pressure-driven structural phase transition and metallization in two-dimensional ferromagnetic semiconductor CrBr3. Dalton Transactions, 2023, 52: 7290–7301.
[96] Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu, Li Chuang, Feng Xiaolei, Yu Shidong, Zhang Limin, Mi Zhongying and Aswathappa Sivakumar. Pressure-driven structural and electronic transitions in quasimolecular layered compound of antimony triiodide. Inorganic Chemistry Frontiers, 2023, 10: 6849–6859.
[95] Qi Qiaomu*, Dai Lidong*, Lebedev Maxim*, Mueller Tobias* and Zhang Junfang*. Editorial for special issue “Rock Physics of Unconventional Reservoirs”. Frontiers in Earth Science, 2023, 11: 1234699, doi: https://doi.org/10.3389/feart.2023.1234699.
[94] Qi Qiaomu, Dai Lidong, Lebedev Maxim, Mueller Tobias and Zhang Junfang. Book: Rock Physics of Unconventional Reservoirs, 2023, Frontiers Media SA: Lausanne, Switzerland, pp: 1–129. https://doi.org/ 10.3389/978-2-8325-3002-3.
[93] Sivakumar Aswathappa*, Sahaya Jude Dhas S., Dai Lidong*, Pushpanathan V., Sivaprakash P., Suresh Kumar Raju, Almansour Abdulrahman I., Arumugam S., Kim Ikhyun, and Martin Britto Dhas S. A*. Sustainability of crystallographic phase of α-Glycine under dynamic shocked conditions. Journal of Molecular Structure, 2023, 1292: 136139, doi: https://doi.org/10.1016/j.molstruc.2023.136139.
[92] Sivakumar Aswathappa*, Sahaya Jude Dhas S., Dai Lidong*, Pushpanathan V., Sivaprakash P., Suresh Kumar Raju, Almansour Abdulrahman I., Kim I, Johnson J., and Martin Britto Dhas S. A*. Diffraction and microscopic studies on lithium sulfate doped L-threonine under dynamic shock wave exposed conditions. Physica B, 2023, 665: 415065, doi: https://doi.org/10.1016/j.physb.2023.415065.
[91] Sivakumar Aswathappa*, Sahaya Jude Dhas S., Dai Lidong*, Sivaprakash P., Vasanthi T., Vijayakumar V. N., Kumar Raju Suresh, Pushpanathan V., Arumugam S., Kim Ikhyun and Martin Britto Dhas S. A*. Structural phase stability analysis on shock wave recovered single and poly-crystalline samples of NiSO4.6H2O. JOM, 2023, 75: 4611–4618.
[90] Sivakumar Aswathappa*, Sahaya Jude Dhas S., Dai Lidong*., Mowlika V., Sivaprakash P., Suresh Kumar Raju., Almansour Abdulrahman I., Arumugam S., Ikhyun Kim and Martin Britto Dhas S. A*. X-Ray diffraction and optical spectroscopic analysis on the crystallographic phase stability of shock wave loaded L-valine. Journal of Materials Science, 2023, 58: 9210–9220.
[89] Sivakumar Aswathappa*, Sahaya Jude Dhas Sathiyadhas, Muthuvel V., Dai Lidong* and Martin Britto Dhas Sathiyadhas Amalapushpam*. Crystal growth by unidirectional method–A generalized view on the crystalline perfection of the uni-indexed, bi-indexed and tri-indexed plane single crystals. Crystal Research and Technology, 2023, 58: 2300193, doi: https://doi.org/10.1002/crat.202300193.
[88] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas S., Kumar Raju Suresh, Abdulrahman I. Almansour and Martin Britto Dhas S. A. Tuning of lower to higher crystalline nature of β-L-glutamic acid by shock waves. Journal of Molecular Structure, 2023, 1288: 135788, doi: https://doi.org/10.1016/j.molstruc.2023.135788.
[87] Sivakumar Aswathappa, Dai Lidong*, Sahaya Jude Dhas S., Martin Britto Dhas S.A., Mowlika V., Suresh Kumar Raju and Almansour Abdulrahman I. Reduction of amorphous carbon clusters from the highly disordered and reduced graphene oxide NPs by acoustical shock waves–Towards the formation of highly ordered graphene. Diamond and Related Materials, 2023, 137: 110139, doi: https://doi.org/10.1016/j.diamond.2023.110139.
[86] Sivakumar Aswathappa, Eniya P., Sahaya Jude Dhas S., Dai Lidong*, Kumar Raju Suresh., Almansour Abdulrahman I., Kalyana Sundar J., and Martin Britto Dhas S. A*. Assessment of shock wave assisted crystallographic structural stability of poly-crystalline and single crystalline Lithium sulfate monohydrate crystals. Journal of Molecular Structure, 2023, 1288: 135699, doi: https://doi.org/10.1016/j.molstruc.2023.135699.
[85] Sivakumar Aswathappa, P. Eniya, S. Sahaya Jude Dhas, Dai Lidong*, P. Sivaprakash, Raju Suresh Kumar, Abdulrahman I. Almansour, J. Kalyana Sundar, Ikhyun Kim, Martin Britto Dhas S. A*. Comparative analysis of crystallographic phase stability of single and poly-crystalline lead nitrate at dynamic shocked conditions. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2023, 298: 116839, doi: https://doi.org/10.1016/j.mseb.2023.116839.
[84] Sivakumar Aswathappa, Sahaya Jude Dhas S., Dai Lidong*, Thirupathy J., Sethuraman K., Kumar Raju Suresh, Almansour Abdulrahman I., Prabhu S., Vijayan N., and Martin Britto Dhas S. A*. Dynamic shock wave induced switchable order to disorder states of single crystal of sulfamic acid–A combined study of X-ray and Raman spectroscopy. Journal of Materials Science, 2023, 58: 8415–8425.
[83] Sivakumar Aswathappa, Saranraj A., Sahaya Jude Dhas S., Vasanthi T., Vijayakumar V. N., Sivaprakash P., Pushpanathan V., Arumugam S., Dai Lidong* and Martin Britto Dhas S. A*. Shock wave recovery experiments on poly-crystalline tri-glycine sulfate–X-ray and Raman scattering analyses. Journal of Molecular Structure, 2023, 1283: 135262, doi: https://doi.org/10.1016/j.molstruc.2023.135262.
[82] Wang Mengqi, Dai Lidong*, Hu Haiying*, Hu Ziming, Jing Chenxin, Yin Chuanyu, Luo Song and Lai Jinhua. Electrical conductivity of anhydrous and hydrous gabbroic melt under high temperature and high pressure: Implications for the high conductivity anomalies in the region of mid‒ocean ridge. Solid Earth, 2023, 14: 847–858.
[81] Zhang Xinyu, Dai Lidong*, Hu Haiying* and Li Chuang. Pressure-induced reverse structural transition of calcite at temperatures up to 873 K and pressures up to 19.7 GPa. Minerals, 2023, 13: 188, doi: https://doi.org/10.3390/min13020188w.
[80] Zhang Xinyu, Dai Lidong*, Hu Haiying*, Hong Meiling and Li Chuang. Pressure-induced reversible structural phase transitions and metallization in GeTe under hydrostatic and non-hydrostatic environments up to 22.9 GPa. Journal of Non-Crystalline Solids, 2023, 618: 122516, doi: https://doi.org/10.1016/j.jnoncrysol.2023.122516.
[79] Dai Lidong*, Hu Haiying*, He Yu and Sun Wenqing. "Some new progress in the experimental measurements on electrical property of main minerals in the upper mantle at high temperatures and high pressures" In Mineralogy, edited by Miloš René. London: IntechOpen, 2022, chapter 2, 15‒38, doi: https://doi.org/10.5772/intechopen.101876.
[78] Dai Lidong, Hu Haiying, Jiang Jianjun, Liu Xi, Manthilake Geeth and Saltas Vassilios. Book: Earth Deep Interior: High-Pressure Experiments and Theoretical Calculations from the Atomic to the Global Scale, 2022, Frontiers Media SA: Lausanne, Switzerland, pp: 1–121. https://doi.org/10.3389/978-2-88976-543-0.
[77] Dai Lidong, Manthilake Geeth, Saltas Vassilios, Hu Haiying*, Jiang Jianjun and Liu Xi*. Editorial: Earth deep interior: High-pressure experiments and theoretical calculations from the atomic to the global scale. Frontiers in Earth Science, 2022, 10, 915318, doi: https://doi.org/10.3389/feart.2022.915318.
[76] Hong Meiling, Dai Lidong*, Hu Haiying*, Yang Linfei and Zhang Xinyu. Pressure-induced structural phase transitions in natural kaolinite investigated by Raman spectroscopy and electrical conductivity. American Mineralogist, 2022, 107: 385–394.
[75] Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu and Li Chuang. High-temperature and high-pressure phase transition of natural barite investigated by Raman spectroscopy and electrical conductivity. Frontiers in Earth Science, 2022, 10, 864183, doi: https://doi.org/10.3389/feart.2022.864183.
[74] Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu, Li Chuang and He Yu. High-pressure structural phase transitions and metallization in layered HfS2 under different hydrostatic environments up to 42.1 GPa. Journal of Materials Chemistry C, 2022, 10: 10541–10550.
[73] Hong Meiling, Dai Lidong*, Hu Haiying*, Zhang Xinyu, Li Chuang and He Yu. Pressure-induced structural phase transition and metallization in CrCl3 under different hydrostatic environments up to 50.0 GPa. Inorganic Chemistry, 2022, 61: 4852‒4864.
[72] Hu Haiying*, Dai Lidong*, Sun Wenqing, Zhuang Yukai, Liu Kaixiang, Yang Linfei, Pu Chang, Hong Meiling, Wang Mengqi, Hu Ziming, Jing Chenxin, Li Chuang, Yin Chuanyu and Sivaprakash Paramasivam. Some remarks on the electrical conductivity of hydrous silicate minerals in the Earth crust, upper mantle and subduction zone at high temperatures and high pressures. Minerals, 2022, 12, 161, doi: https://doi.org/10.3390/min12020161.
[71] Hu Haiying, Dai Lidong*, Sun Wenqing, Wang Mengqi and Jing Chengxin. Constraints on fluids in the continental crust from the laboratory-based electrical conductivity of plagioclase. Gondwana Research, 2022, 107: 1‒12.
[70] Hu Haiying, Jing Chenxin, Dai Lidong*, Yin Chuanyu and Chen Dongmei. Electrical conductivity of siderite and its implication for high conductivity anomaly in the slab‒mantle wedge interface. Frontiers in Earth Science, 2022, 10, 985740, doi: https://doi.org/10.3389/feart.2022.985740.
[69] Sun Wenqing, Dai Lidong*, Hu Haiying*, Wang Mengqi, Hu Ziming and Jing Chenxin. Experimental research on electrical conductivity of the olivine-ilmenite system at high temperatures and high pressures. Frontiers in Earth Science, 2022, 10, 861003, doi: https://doi.org/10.3389/feart.2022.861003.
[68] Wang Mengqi, Dai Lidong*, Hu Haiying*, Sun Wenqing, Hu Ziming and Jing Chenxin. Effect of different mineralogical proportions on the electrical conductivity of dry hot-pressed sintering gabbro at high temperatures and pressures. Minerals, 2022, 12, 336, doi: https://doi.org/10.3390/min12030336.
[67] Zhang Xinyu, Dai Lidong*, Hu Haiying*, Hong Meiling and Li Chuang. Pressure-induced coupled structural-electronic transition in SnS2 under different hydrostatic environments up to 39.7 GPa. RSC Advances, 2022, 12: 2454–2461.
[66] Hong Meiling, Dai Lidong*, Hu Haiying* and Zhang Xinyu. Pressure-induced structural phase transition and metallization in Ga2Se3 up to 40.2 GPa under non-hydrostatic and hydrostatic environments. Crystals, 2021, 11, 746, doi: https://doi.org/10.3390/cryst11070746.
[65] Sun Wenqing, Jiang Jianjun, Dai Lidong*, Hu Haiying, Wang Mengqi, Qi Yuqing and Li Heping. Electrical properties of dry polycrystalline olivine mixed with various chromite contents: Implications for the high-conductivity anomalies in subduction zones. Geoscience Frontiers, 2021, 12, 101178, doi: https://doi.org/10.1016/j.gsf.2021.101178.
[64] Sun Wenqing, Dai Lidong*, Hu Haiying*, Jiang Jianjun, Wang Mengqi, Hu Ziming and Jing Chenxin. Influence of saline fluids on the electrical conductivity of olivine aggregates at high temperature and high pressure and its geological implications. Frontiers in Earth Science, 2021, 9, 749896, doi: https://doi.org/10.3389/feart.2021.749896.
[63] Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Hong Meiling, Zhang Xinyu and Liu Pengfei. High-pressure investigations on the isostructural phase transition and metallization in realgar with diamond anvil cells. Geoscience Frontiers, 2021, 12: 1031–1037.
[62] Yang Linfei, Jiang Jianjun, Dai Lidong*, Hu Haiying*, Hong Meiling, Zhang Xinyu, Li Heping and Liu Pengfei. High-pressure structural phase transition and metallization in Ga2S3 under non-hydrostatic and hydrostatic conditions up to 36.4 GPa. Journal of Materials Chemistry C, 2021, 9: 2912–2918.
[61] Zhang Xinyu, Dai Lidong*, Hu Haiying* and Hong Meiling. Pressure-induced metallic phase transition in gallium arsenide up to 24.3 GPa under hydrostatic conditions. Modern Physics Letters B, 2021, 35, 2150460, doi: https://doi.org/10.1142/s0217984921504601.
[60] Dai Lidong* and Karato Shun-ichiro. Electrical conductivity of Ti-bearing hydrous olivine aggregates at high temperature and high pressure. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020309, doi: https://doi.org/10.1029/2020JB020309.
[59] Dai Lidong, Hu Haiying*, Jiang Jianjun, Sun Wenqing, Li Heping, Wang Mengqi, Vallianatos Filippos and Saltas Vassilios*. An overview of the experimental studies on the electrical conductivity of major minerals in the upper mantle and transition zone. Materials, 2020, 13, 408, doi: https://doi.org/10.3390/ma13020408.
[58] Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun and Wang Mengqi. Electrical conductivity of clinopyroxene-NaCl-H2O system at high temperatures and pressures: Implications for high-conductivity anomalies in the deep crust and subduction zone. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019093, doi: https://doi.org/10.1029/2019JB019093.
[57] Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Hong Meiling and Zhang Xinyu. The phase transition and dehydration in epsomite under high temperature and high pressure. Crystals, 2020, 10, 75, doi: https://doi.org/10.3390/cryst10020075.
[56] Dai Lidong*, Pu Chang, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Hong Meiling. Characterization of metallization and amorphization for GaP under different hydrostatic environments in diamond anvil cell up to 40.0 GPa. Review of Scientific Instruments, 2019, 90, 066103, doi: https://doi.org/10.1063/1.5093949.
[55] Dai Lidong*, Hu Haiying*, Sun Wenqing, Li Heping, Liu Changcai and Wang Mengqi. Influence of high conductive magnetite impurity on the electrical conductivity of dry olivine aggregates at high temperature and high pressure. Minerals, 2019, 9, 44, doi: https://doi.org/10.3390/min9010044.
[54] Hong Meiling, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Pu Chang. Structural phase transition and metallization of nanocrystalline rutile investigated by high-pressure Raman spectroscopy and electrical conductivity. Minerals, 2019, 9, 441, doi: https://doi.org/10.3390/min9070441.
[53] Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Yang Linfei, Pu Chang and Hong Meiling. Evidences for phase transition and metallization in β-In2S3 at high pressure. Chemical Physics, 2019, 524: 63–69.
[52] Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Yang Linfei, Pu Chang and Hong Meiling. Phase transition and metallization of orpiment by Raman spectroscopy, electrical conductivity and theoretical calculation under high pressure. Materials, 2019, 12, 784, doi: 10.3390/ma12050784.
[51] Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai, Yang Linfei, Pu Chang and Hong Meiling. Pressure-induced phase transitions for goethite investigated by Raman spectroscopy and electrical conductivity. High Pressure Research, 2019, 39: 106–116.
[50] Pu Chang, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Hong Meiling. Pressure-induced phase transitions of ZnSe under different pressure environments. AIP Advances, 2019, 9, 025004, doi: https://doi.org/10.1063/1.5082209.
[49] Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying and Liu Changcai. Effect of temperature, pressure and chemical composition on the electrical conductivity of granulite and geophysical implications. Journal of Mineralogical and Petrological Sciences, 2019, 114: 87–98.
[48] Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun and Liu Changcai. Experimental study on the electrical properties of carbonaceous slate: A special natural rock with unusually high conductivity at high temperatures and pressures. High Temperatures-High Pressures, 2019, 48: 455–467.
[47] Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Liu Changcai and Wang Mengqi. Effect of temperature, pressure and chemical compositions on the electrical conductivity of schist: Implications for electrical structures under the Tibetan plateau. Materials, 2019, 12, 961, doi: 10.3390/ma12060961.
[46] Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Pu Chang, Hong Meiling and Liu Pengfei. Characterization of the pressure-induced phase transition of metallization for MoTe2 under different hydrostatic environments. AIP Advances, 2019, 9, 065104, doi: https://doi.org/10.1063/1.5097428
[45] Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Pu Chang, Hong Meiling and Liu Pengfei. Pressure-induced metallization in MoSe2 under different pressure conditions. RSC Advances, 2019, 9: 5794‒5803.
[44] Dai Lidong*, Sun Wenqing, Li Heping, Hu Haiying, Wu Lei and Jiang Jianjun. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures. Solid Earth, 2018, 9: 233–245.
[43] Dai Lidong*, Liu Kaixiang, Li Heping, Wu Lei, Hu Haiying, Zhuang Yukai, Yang Linfei, Pu Chang and Liu Pengfei. Pressure-induced irreversible metallization with phase transitions of Sb2S3. Physical Review B, 2018, 97: 024103, doi: https://doi.org/10.1103/PhysRevB.97.024103.
[42] Dai Lidong*, Hu Haiying, Li Heping, Sun Wenqing and Jiang Jianjun. Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications for the mechanism of conduction. Chinese Physics B, 2018, 27: 028703, doi: https://doi.org/10.1088/1674-1056/27/2/028703.
[41] Hu Haiying, Dai Lidong*, Li Heping, Sun Wenqing and Li Baosheng. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole and its implications for the high conductivity anomalies in subduction zones and continental crust. Earth and Planetary Science Letters, 2018, 498: 27–37.
[40] Liu Kaixiang, Dai Lidong*, Li Heping, Hu Haiying, Wu Lei, Zhuang Yukai, Pu Chang and Yang Linfei. Migration of impurity level reflected in the electrical conductivity variation for natural pyrite at high temperature and high pressure. Physics and Chemistry of Minerals, 2018, 45: 85–92.
[39] Pu Chang, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai, Liu Kaixiang, Yang Linfei and Hong Meiling. High–pressure electrical conductivity and Raman spectroscopic study of chalcanthite. Spectroscopy Letters, 2018, 51: 531–539.
[38] Yang Linfei, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai, Liu Kaixiang, Pu Chang and Hong Meiling. Pressure-induced structural phase transition and dehydration for gypsum investigated by Raman spectroscopy and electrical conductivity. Chemical Physics Letters, 2018, 706: 151–157.
[37] Zhuang Yukai, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei, Pu Chang and Hong Meiling. Pressure induced reversible metallization and phase transition in Zinc Telluride. Modern Physics Letters B, 2018, 34, 1850342, doi: https://doi.org/10.1142/S0217984918503426.
[36] Zhuang Yukai, Dai Lidong*, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei, Pu Chang, Hong Meiling and Liu Pengfei. Deviatoric stresses promoted metallization in rhenium disulfide. Journal of Physics D: Applied Physics, 2018, 51, 165101, doi: https://doi.org/10.1088/1361-6463/aab5a7.
[35] Dai Lidong*, Zhuang Yukai, Li Heping, Wu Lei, Hu Haiying, Liu Kaixiang, Yang Linfei and Pu Chang. Pressure-induced irreversible amorphization and metallization with a structural phase transition in arsenic telluride. Journal of Materials Chemistry C, 2017, 5: 12157–12162.
[34] Hu Haiying, Dai Lidong*, Li Heping, Hui Keshi and Sun Wenqing. Influence of dehydration on the electrical conductivity of epidote and implications for high conductivity anomalies in subduction zones. Journal of Geophysical Research: Solid Earth, 2017, 122: 2751–2762.
[33] Hui Keshi, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun, Sun Wenqing and Zhang Hui. Experimental study on the electrical conductivity of pyroxene andesite at high temperature and high pressure. Pure and Applied Geophysics, 2017, 174: 1033–1041.
[32] Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Jiang Jianjun and Hui Keshi. Effect of dehydration on the electrical conductivity of phyllite at high temperatures and pressures. Mineralogy and Petrology, 2017, 111: 853–863.
[31] Sun Wenqing, Dai Lidong*, Li Heping, Hu Haiying, Wu Lei and Jiang Jianjun. The electrical conductivity of mudstone before and after dehydration at high temperatures and pressures. American Mineralogist, 2017, 102: 2450–2456.
[30] Wu Lei, Dai Lidong*, Li Heping, Hu Haiying, Zhuang Yukai and Liu Kaixiang. Anomalous phase transition of Bi-doped Zn2GeO4 investigated by electrical conductivity and Raman spectroscopy under high pressure. Journal of Applied Physics, 2017, 121: 125901, doi: https://doi.org/10.1063/1.4979311.
[29] Zhuang Yukai, Dai Lidong*, Wu Lei, Li Heping, Hu Haiying, Liu Kaixiang, Yang Linfei and Pu Chang. Pressure-induced permanent metallization with reversible structural transition in molybdenum disulfide. Applied Physics Letters, 2017, 110: 122103, doi: https://doi.org/10.1063/1.4979143.
[28] Dai Lidong*, Hu Haiying, Li Heping, Wu Lei, Hui Keshi, Jiang Jianjun and Sun Wenqing. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications. Geochemistry, Geophysics, Geosystems, 2016, 17: 2394–2407.
[27] Dai Lidong, Wu Lei, Li Heping, Hu Haiying, Zhuang Yukai and Liu Kaixiang. Evidence of the pressure-induced conductivity switching of yttrium-doped SrTiO3. Journal of Physics: Condensed Matter, 2016, 28: 475501, doi: https://doi.org/10.1088/0953-8984/28/47/475501.
[26] Dai Lidong, Wu Lei, Li Heping, Hu Haiying, Zhuang Yukai and Liu Kaixiang. Pressure-induced phase-transition and improvement of the micro dielectric properties in yttrium-doped SrZrO3. Europhysics Letters, 2016, 114: 56003, doi: https://doi.org/10.1209/0295-5075/114/56003.
[25] Wu Lei, Dai Lidong*, Li Heping, Zhuang Yukai and Liu Kaixiang. Pressure-induced improvement of grain boundary properties in Y-doped BaZrO3. Journal of Physics D: Applied Physics, 2016, 49: 345102, doi: https://doi.org/10.1088/0022-3727/49/34/345102.
[24] Dai Lidong and Karato Shun-ichiro. Reply to comment on “High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine” by Dai and Karato [Earth Planet. Sci. Lett. 408 (2014) 79–86]. Earth and Planetary Science Letters, 2015, 427: 300–302.
[23] Dai Lidong, Hu Haiying, Li Heping, Hui Keshi, Jiang Jianjun, Li Jia and Sun Wenqing. Electrical conductivity of gabbro: the effects of temperature, pressure and oxygen fugacity. European Journal of Mineralogy, 2015, 27: 215–224.
[22] Dai Lidong*, Jiang Jianjun, Li Heping, Hu Haiying and Hui Keshi. Electrical conductivity of hydrous natural basalt at high temperatures and high pressures. Journal of Applied Geophysics, 2015, 112: 290–297.
[21] Hui Keshi, Zhang Hui, Li Heping, Dai Lidong*, Hu Haiying, Jiang Jianjun and Sun Wenqing. Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: evidence of grain boundary transport. Solid Earth, 2015, 6: 1037–1043.
[20] Dai Lidong and Karato Shun-ichiro. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth and Planetary Science Letters, 2014, 408: 79–86.
[19] Dai Lidong, Hu Haiying, Li Heping, Jiang Jianjun and Hui Keshi. Effects of temperature, pressure and chemical composition on the electrical conductivity of granite and its geophysical implications. American Mineralogist, 2014, 99: 1420–1428.
[18] Dai Lidong and Karato Shun-ichiro. Influence of FeO and H on the electrical conductivity of olivine. Physics of the Earth and Planetary Interiors, 2014, 237: 73–79.
[17] Dai Lidong and Karato Shun-ichiro. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Physics of the Earth and Planetary Interiors, 2014, 232: 51–56.
[16] Dai Lidong and Karato Shun-ichiro. Influence of oxygen fugacity on the electrical conductivity of olivine under hydrous conditions: Implications for the mechanism of conduction. Physics of the Earth and Planetary Interiors, 2014, 232: 57–60.
[15] Dai Lidong, Li Heping, Hu Haiying, Jiang Jianjun, Hui Keshi and Shan Shuangming. Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics, 2013, 608: 1086–1093.
[14] Dai Lidong, Kudo Yuki, Hirose Kei, Murakami Motohiko, Asahara Yuki, Ozawa Haruka, Ohishi Yasuo and Hirao Naohisa. Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases 73 GPa determined by Brillouin scattering method. Physics and Chemistry of Minerals, 2013, 40: 195–201.
[13] Dai Lidong, Li Heping, Hu Haiying, Shan Shuangming, Jiang Jianjun and Hui Keshi. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contributions to Mineralogy and Petrology, 2012, 163: 689–700.
[12] Dai Lidong, Li Heping, Hu Haiying and Shan Shuangming. In-situ control of oxygen fugacity for laboratory measurements of electrical conductivity of minerals and rocks in multi-anvil press. Chinese Physics B, 2011, 20: 049101, doi: https://doi.org/10.1088/1674-1056/20/4/049101.
[11] Dai Lidong, Li Heping, Li Chunhai, Hu Haiying and Shan Shuangming. The electrical conductivity of dry polycrystalline olivine compacts at high temperatures and pressures. Mineralogical Magazine, 2010, 74: 849–857.
[10] Dai Lidong and Karato Shun-ichiro. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth and Planetary Science Letters, 2009, 287: 277–283.
[9] Dai Lidong and Karato Shun-ichiro. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Physics of the Earth and Planetary Interiors, 2009, 176: 83–88.
[8] Dai Lidong and Karato Shun-ichiro. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. Proceedings of the Japan Academy (Series B), 2009, 85: 466–475.
[7] Dai Lidong, Li Heping, Hu Haiying and Shan Shuangming. Novel technique to control oxygen fugacity during high-pressure measurements of grain boundary conductivities of rocks. Review of Scientific Instruments, 2009, 80: 033903, doi: https://doi.org/10.1063/1.3097882.
[6] Dai Lidong, Li Heping, Hu Haiying and Shan Shuangming. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. Journal of Geophysical Research: Solid Earth, 2008, 113: B12211, doi: https://doi.org/10.1029/2008JB005820.
[5] Dai Lidong, Li Heping, Deng Heming, Liu Congqiang, Su Genli, Shan Shuangming, Zhang Lei and Wang Riping. In situ control of different oxygen fugacity experimental study on the electrical conductivity of lherzolite at high temperature and high pressure. Journal of Physics and Chemistry of Solids, 2008, 69: 101–110.
[4] Dai Lidong, Li Heping, Liu Congqiang, Su Genli and Shan Shuangming. Experimental measurement on the electrical conductivity of pyroxenite at high temperature and high pressure under different oxygen fugacities. High Pressure Research, 2006, 26: 193–202.
[3] Dai Lidong, Li Heping, Liu Congqiang, Cui Tongdi, Shan Shuangming, Yang Changjun, Liu Qingyou and Deng Heping. Experimental measurement on the electrical conductivity of single crystal olivine at high temperature and high pressure under different oxygen fugacities. Progress in Natural Science, 2006, 16: 387–393.
[2] Dai Lidong, Li Heping, Liu Congqiang, Shan Shuangming, Cui Tongdi and Su Genli. Experimental study on the electrical conductivity of orthopyroxene at high temperature and high pressure under different oxygen fugacities. Acta Geological Sinica-English Edition, 2005, 79: 803–809.
[1] Dai Lidong, Li Heping, Liu Congqiang, Su Genli and Cui Tongdi. In situ control of oxygen fugacity experimental study on the crystallographic anisotropy of the electrical conductivities of diopside at high temperature and high pressure. Acta Petrological Sinica, 2005, 21: 1737–1742.
作为第一发明人,部分已授权中国国家发明专利:
[1] 发明人:代立东和胡海英. 一种高温高压条件下制备硅灰石单晶的方法. 专利号:ZL 202111499124.5, 授权日:2023年02月28日;
[2] 发明人:代立东和胡海英. 一种高温高压下制备锰铝榴石单晶的方法. 专利号:ZL 202111495846.3, 授权日:2023年02月14日;
[3] 发明人:代立东和胡海英. 一种高温高压条件下制备钙铝榴石单晶的制备方法. 专利号:ZL 202111498507.0, 授权日:2023年02月14日;
[4] 发明人:代立东和胡海英. 一种高温高压条件下制备镁铝榴石单晶的方法. 专利号:ZL 202111495741.8, 授权日:2022年09月13日;
[5] 发明人:代立东和胡海英. 一种高温高压下高铬和高含水的钴橄榄石单晶的制备方法. 专利号:ZL 202111317739.1, 授权日:2022年10月11日;
[6] 发明人:代立东和胡海英. 一种高钒、高钛和高含水的锰橄榄石单晶的制备方法. 专利号:ZL 202111317919.X, 授权日:2022年09月23日;
[7] 发明人:代立东和胡海英. 一种高钙、高锰和高含水的顽火辉石单晶的制备方法. 专利号:ZL 202111391809.8, 授权日:2022年09月13日;
[8] 发明人:代立东和胡海英. 一种高钛、高钒和高含水的紫苏辉石单晶的制备方法. 专利号:ZL 202111401199.5, 授权日:2022年09月09日;
[9] 发明人:代立东和胡海英. 高温高压下高钪、高锆和高含水钙铁辉石单晶的制备方法. 专利号:ZL 202111391789.4, 授权日:2022年09月09日;
[10]发明人:代立东和胡海英. 一种高钛、钒、铬和高含水的钙镁橄榄石单晶的制备方法. 专利号:ZL 202111317730.0, 授权日:2022年07月26日。